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Abstract

The dynamic stability of infinitely wide composite plates subjected to suddenly applied thermal or mechanical
loading is investigated. The stability analysis is performed by evaluating the largest Lyapunov exponent, the sign of
which characterizes the nature of the response. It is shown that this approach forms an efficient tool which provides a
quantitative and unequivocal answer to the question of dynamic buckling of composite plates subjected to various types
of loading. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The stability of motion, as generally defined by Lyapunov, can be considered to be the ability to preserve
certain properties of the motion under a perturbation of a specific type. The loss of stability in structures
can occur in several ways due to various kinds of dynamic loading. Consequently, the application of the
general concept of stability to various problems of dynamic stability of structures yielded numerous ap-
proaches that provide several criteria for dynamic buckling. Classification of the numerous problems of
dynamic stability into groups and discussion of the applicability of various dynamic stability concepts to
different types of structures and loadings can be found in the monograph by Simitses (1990).

Dynamic instability which is caused by periodic loading (termed parametric instability) has been com-
prehensively studied using a variety of methods. The approach of Lyapunov exponents was suggested for
the investigation of this group of problems by Aboudi et al. (1990) where viscoelastic homogeneous plates
were considered. It was further employed to study the parametric stability of plates made of several types of
homogeneous and composite materials (Cederbaum et al., 1991; Touati and Cederbaum, 1994; Gilat and
Aboudi, 2000). This approach is based on the evaluation of a set of numbers, the Lyapunov exponents, the
signs of which characterize the nature of the dynamical system. The calculation of these exponents can be
efficiently carried out through the incremental procedure suggested by Goldhirsch et al. (1987).
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The dynamic stability of structures which are subjected to non-periodic time-dependent loadings have
been investigated by many authors, see the monographs by Lindberg and Florence (1987), Jones (1989) and
Simitses (1990) for example. For problems of this type, the concept of Budiansky (1967) has been com-
monly used to determine the stability limit. According to this heuristic concept, the critical conditions under
which dynamic buckling occurs involve a large change in the response due to a small change in the loading.
Thus, a buckling curve which displays the variation of a characteristic response parameter versus the load
parameter, has to be examined. The critical load is that for which the slope of the buckling curve abruptly
changes. Nevertheless, the practical application of this dynamic buckling criteria shows that it is not always
decisive.

In the present work, the Lyapunov exponents approach is offered as an efficient tool by which the dy-
namic buckling analysis of composite plates, subjected to a sudden thermal or mechanical loading, can be
performed. This approach is based on the determination of the sign of the largest Lyapunov exponent, and
thus provides a direct and unequivocal answer to the question whether the response of the plate due to a
specific loading is stable or not.

Results for the dynamic buckling of infinitely wide composite plates, obtained using the proposed ap-
proach, have been presented. It has been shown that the present analysis is applicable to problems in which
the in-plane inertia terms are either included or excluded. The results established by the Lyapunov expo-
nents stability analysis have been compared with those obtained by the application of other concepts of
dynamic buckling. Good agreements have been shown demonstrating the advantages of the present ap-
proach.

2. Basic formulation

Consider a linearly elastic orthotropic rectangular plate of an infinite width in the y direction, and
uniformly supported along the edges x = 0, L. The thickness of the plate is /# and the coordinate z is per-
pendicular to the plane of the plate with its origin placed in the mid-plane. The plate is subjected to a
suddenly applied loading which is either thermal (namely rapid heating), or mechanical (namely rapid
normal in-plane edge displacement or load).

In the framework of the classical plate theory, the von-Karman strains for the present cylindrical
bending problem are

0 1 0
&xx = &, T ZE, &y = & (1)
where
0 __ 1 2 0 _ 1 1 _
83“ = Uxx + E(MZJ) + Uzx U0y Exy - Euyv)ﬁ Sxx = —Uzxx

and u,, u,, u. denote the displacements of a point on the mid-plane, and u., is the initial geometrical im-
perfection which is associated with the initial stress-free state. Comma is used for denoting spatial deriva-
tives.

The plate is made of unidirectionally fiber-reinforced layers. Both fibers and matrix are thermo-elastic
and anisotropic materials. The effective mechanical and thermal properties of the unidirectional composite
are determined by the micromechanical method of cells (Aboudi, 1991). In the framework of this method
the overall composite constitutive law is obtained in terms of the material properties of the constituents,
and expressed with respect to material coordinates, one of which coincides with the fiber direction. A
further transformation reduces this constitutive law to the the plate coordinate system (x, y,z), such that it
can be presented in the following form:

6=Ce—¢") (2)
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Here C is the effective elastic stiffness tensor of the composite (which is solely determined by the properties
of its constituents), ¢ and ¢ are the average stress and strain tensors, respectively. The thermal strain of the
composite is &7 = aAT where a is the effective thermal expansion tensor, and AT is the temperature devi-
ation from a reference temperature 7z at which the material is strain-free.

2.1. In-plane inertia neglected
Under circumstances for which the in-plane inertia effects are negligible (e.g. distributed surface heating
or relatively slow mechanical loading) the equations which govern the motion of the plate are (Reddy, 1997)
Nxxx - 07 nyx,x = 07 Mxx,xx + Nxx(uzafx + qu,xx) - 11 ilz (3)

where dot and double dot denote first and second time derivatives respectively. The force, moment and
inertia resultants, N, M, and I; are given by

h/2
(N,M):/ a(l,z)dz
—h/2
h/2 (4)
Il = / de
—h/2
with p being the effective mass density of the composite. For a plane-stress state, these definitions yield the
following plate constitutive relations

Nix An 416 B &y, N,
Ny | = |46 Aes Bis | | 260, | — | N} (5)
M, By Bis Du] | e ML

where the extension, coupling and bending stiffness matrices 4, B and D are defined as usual by

h/2
(4,B,D) = / Q(l, z, zz)dz (6)
—h/2
with Q being the reduced effective stiffness coefficients.
The thermal resultants are given by

n/2
(Ve M) = / (0110 + Q12tyy + 01620, ] AT(1,2)dz
—h/2 7)
h/2
(NXTV) = /h/2 [O16% + On60tyy + Qo620 | ATdz
The first two of Eq. (3) can be solved to find the in-plane displacements of the mid-plane u,, u, as follows.
Integration of the first two of Eq. (3) in conjunction with the stress—strain relations (2), the stress resultants
defined in Eq. (4) for a state of plane stress, and the strain-displacement relation (1), results in

0 0 T

N = An &, + 416 26, — Biy Uze — Ny, = o
0 0 T

ny = A16 Ex +A66 28xy — Bl6 Uzxx — ny =C]

(®)

where ¢y(¢), ¢;(¢) are integration functions with ¢ denoting time.

Let the temperature field be symmetric with respect to x = L/2. Furthermore, it is assumed that the
variation of the stiffnesses with respect to x, due to the temperature dependence of the material properties,
is negligible. The solution of Eq. (8) for &), and &), leads to
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0
&, = C2FC3 Usyy

9
28)(c)y =C4+Cs Uz xx ( )
where
a) — A66NxTx +A16N)};
e (x,t) = o
es(t) =2
“ (10)
as + AigNE —AnNgv
cax,t) = p;
1
as
==
es(1) o

and

a; = A}, — A1 dss
ay = — Agsco + A16c1
az = A16B1s — AesB11
as = Aisco — Anici
as = AigB11 — A1 Bis

Eq. (9) in conjunction with strain—displacement relations (1) yield the in-plane displacements of the mid-
plane

1
Uy = /CZ dx + C3 uz,x - E /uz,x (uz,x + 2”02.):) dx + Cc7
(1)

uyz/64 dx + ¢s5 u, . + cs

with ¢ and c¢; representing rigid body motion which can be neglected.

The expressions for ¢y and ¢, are obtained by imposing the in-plane boundary conditions. Two sets of in-
plane boundary conditions are considered in the framework of the degenerated formulation.

(a) For a thermal loading, the in-plane displacements of the edges are prevented, i.e.

u,=u,=0 atx=0,L (12)

These boundary conditions in conjunction with Eq. (11) yield

A A Ay [* Lt
co = Mwm(m —u(L) + 57 / et + 200} — / Nyydx
Agscs + A A [* Lt
oy = “os¢s + A16¢3 (11 (0) — .. (L)] + 220 / U (142 + 21102, )dx — — / NTdx (13)
L ! 2L 0 ’ ' L 0 Y

(b) For a mechanical step loading, it is assumed that
u, = U(1), Ny, =0 atx=0,L (14)

where U(¢) specifies the temporal dependence of the applied displacement. This results in the following
expression for ¢y and ¢;
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) 0]~ [t 2w [ 2 [t 2 ug
Uz x Uz x 2A66L A Uz x\Uzx Uoz x b A Xx A66L A xp A66L

acs
A66L
cp = 0

Cy =

(15)
Thus, in both cases the force and moment resultants can be expressed in terms of the plate stiffnesses,

thermal stress resultants and the unknown transverse displacement, u., such that the third of the equations
of motion (3) becomes a partial differential equation that governs the transverse displacement only:

[Bll (CZ + C3uz,xx) + Blé(c4 + CS”z,xx) - Dlluz‘xx - Mgc],xx + CO(uz‘xx + qu‘xx) = ]li’lz (16)

Furthermore, in both cases the edges are taken to be simply supported, namely having the following out-
of-plane boundary conditions

u,=M,=0, atx=0,L (17)

Let the initial imperfection and the transverse displacement be expressed by the following series

up, = i Wy, sin(jmx/L)
(13
u, = Z Wi(t) sin(jmx/L) + W (t)[cos(2mx/L) — 1]

where juin, jmax denote the first and last terms of the series, respectively. These expressions satisfy the first of
boundary conditions (17), and W(t) = B11¢2(0,¢) + Bisca(0,7) — M~ is defined such that the boundary
condition on M., is fulfilled as well. When symmetry (with respect to z) of the layup and the temperature
field exists, W (¢) = 0.

Application of the Galerkin method with respect to the spatial coordinate x, with sin(kmx/L) as
weighting functions, reduces Eq. (16) to the following set of nonlinear ordinary differential equations

Jmax Jmax Jmax Jmax

We—= > W2 Wibyg— > W byg— > W Wby — > Wy bagg — Wi bsi — b =0, k= jimin, - - -, jmax

J=Jmin J=Jmin J=Jmin J=Jmin

(19)

where biyj, baj, b3y, barj, bsi and bg, are functions of the plate stiffnesses, thermal resultants and the am-
plitudes of the initial imperfection. These are given in Appendix A.
The differential Eq. (19) are accompanied by the following initial conditions

W,=W,=0, att=0 (20)

2.2. In-plane inertia included

Having applied the Lyapunov exponent approach to problems in which the in-plane inertia terms have
been neglected, a formulation which includes these terms is considered next. The effects of the in-plane
inertia on the structure response have been discussed by Lindberg and Florence (1987) and Mclvor and
Bernard (1973) for example. The fully dynamic governing equations of the plate, which in contrast to Eq.
(3) include the in-plane inertia terms, are (Reddy, 1997)

Nxx,x = Il i’.lxa ny;c = 11 i'iyv Mxx.xx + [Nxx(uz,x + qu,x)],x = [li’lz (21)
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By implementing the finite difference method with respect to the spatial coordinate x, using central
derivative approximations, the nonlinear partial differential equations (21) are reduced to a set of nonlinear
ordinary differential equations with respect to time

U=L(U) (22)
Here

T
U=[U, Uy ..Uy Uy Uy, Uy U Uy Uy ]

Zpmax—1

= uy(xpv t)a U

with Uy, = u.(x,, 1), U,, ., = u:(x,, 1) being the values of the dependent variables at the spatial
mesh points x,, p = 0,1,..., pmax (thus ppnax — 1 is the number of spatial intervals which is determined such
that convergence is achieved), and L(U) are nonlinear functions of U.

These equations are accompanied by the out-of-plane boundary conditions (17), and by the following in-

plane boundary conditions

Nu=N(1), Ny=0 atx=0,L (23)
through which U, Uy, . U,, U, . U, U.,  aredefined. Here N(¢) specifies the temporal dependence of
the applied axial load. The initial conditions are

U=U=0, atr=0 (24)

3. Dynamic stability analysis

In order to investigate the stability of composite plates under a suddenly applied thermal or mechanical
load the concept of Lyapunov exponents is employed. Lyapunov stability analysis of a dynamical system
consists of the evaluation of a corresponding set of characteristic numbers (e.g. Hahn, 1967). The negative
values of these characteristic numbers are known as Lyapunov exponents. According to Lyapunov, the
motion is asymptotically stable if all the exponents are negative. A positive Lyapunov exponent indicates an
exponential separation between two initially close trajectories, namely instability of the system (Chetaev,
1961). The system is stable if the largest Lyapunov exponent is not greater than zero. Consequently, it is
sufficient to evaluate the largest Lyapunov exponent in order to characterize the behavior of a dynamical
system.

According to Goldhirsch et al. (1987) the Lyapunov exponents can be efficiently determined by the
following procedure. Consider the system of ordinary nonlinear differential equations

v =F(v) (25)
The associated stability equation is given by

OF;
aUm v=y(t)

and y can be regarded as a small perturbation of v. Within the time increment 0 < ¢ < ¢!!), the system (26)
with G(¢ = 0) is solved numerically for the normalized initial conditions

(O)]| =1

where ||.|| is the Euclidean norm. This yields y(:(").
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Eq. (26) with G(t = tV) and with the following initial conditions

(V)
G

are then solved within the second time interval V) < ¢ < #?) yielding y(¢®). The process is repeated for n
time intervals while correspondingly, the system (25) is solved to provide the values of v(¢") needed for the
evaluation of G. Namely, the incremental procedure is simultaneously used to get the nonlinear response
and the Lyapunov exponents.

For the nth time interval, let us define the value of the parameter u, as follows:

Z log, [[y(*")]] /¢ (27)

It has been shown (Goldhirsch et al., 1987) that for finite large time, the value of y, approaches to the value
of the Lyapunov exponent.

Employing the above procedure to investigate the dynamic stability of elastic infinitely wide plate, Eq.
(25) is obtained by reducing Eq. (19) or Eq. (22) to a set of first order differential equations. The matrix G in
the stability equations (26) can thus be written as follows:

G {[0] [I]] (28)

where the square sub-matrices 0, I are the zero and unit matrices respectively. The order of these sub-
matrices and the specific form of sub-matrix g depends on the adopted formulation as described below.

When in-plane inertia effects are excluded and the governing equations are given by Eq. (19), each of the
sub-matrices of G is of order J = jiax — jmin + 1, where J is the number of terms in the series approximation
Eq. (18), and the elements of g have the following form:

jmax j“]';\)(
Z I/ijblkj + Z Wibsij + bsi | + 2WiWubjon + 2W,uboign + Wibsgn + bajon (29)

J=Jmin J=Jmin

8km = 5/{m

with d, being the Kronecker delta.

When in-plane inertia effects are included and Eq. (22) is relevant, each of the sub-matrices of G is of
order 3(pmax — 1).

Note that the matrix g is a function of the stiffnesses which may be temperature dependent, and of the
displacement variables. The latter are the solution of the ordinary nonlinear differential equations (19) or
(22), which have been reduced to a set of first order equations in order to confirm with the general form
(25). Hence Eq. (19) or Eq. (22), have to be solved simultaneously with the progressing of the stability
analysis, such that at the end of each time increment, the elements of the matrix G are updated accordingly,
as has been discussed above.

4. Application

The previously described method for evaluating the largest Lyapunov exponent is employed herein in
order to determine whether the behavior of an infinitely wide elastic composite plate subjected to a sudden
thermal or mechanical loading is stable or not. Thus the question of dynamic stability of the composite
plate is quantitatively determined. The established results of the Lyapunov exponents stability analysis are
compared with those obtained by the application of the concept of dynamic buckling of Budiansky (1967).
The generated results are based on a one term approximation of the displacement, namely with
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Jmin = Jmax = 1 in Eq. (18). For the fully dynamic analysis including in-plane inertia, spatial and time in-
crements were chosen such as to assure numerical convergence. The material properties of the matrix and
fiber phases are: E™ = 72.4 GPa, v™ = 0.33, o™ = 23.1 x 107¢ per °C for the matrix, and E" = 414 GPa,
v =0.3, o/ =4.8 x 107 per °C for the fibers (E, v and « denote the Young’s modulus, Poisson’s ratio and
coefficient of thermal expansion). The thickness ratio of the plate is L/# = 100. In the presented results time
is given in seconds.

4.1. Thermal loading

Considered a unidirectional plate with fiber oriented in an angle of 45° with respect to the x axis, having
initial imperfection W, = 0.001 h and being initially at a temperature 7z = 21°C. Let the plate’s upper and
lower surfaces be subjected to a sudden uniform time-dependent heating of the form: T(¢) = Tr +
T,,(1 — 7% with T,, being the temperature amplitude. For thin plates it can be assumed that the resulting
temperature field is spatially uniform. Under these loading conditions the effects of the in-plane inertia are
negligible and the formulation which is given in Section 2.1(a) is used.

4.1.1. Linear analysis
Neglecting terms containing high order powers of ,, Eq. (19) becomes the linear equation of motion of
the plate, which for one mode approximation has the following form:

Wy — Wi(bas + bsy) — bgy = 0 (30)

Disregarding the temporal dependence of by, b5, (Which is due to the time-dependent applied temperature)
reduces Eq. (30) to a linear second order ordinary differential equation with constant coefficients. The
nature of the solution of Eq. (30) depends on the sign of the coefficient of W, (Jones, 1989). The thermal
buckling load, separating the bounded motion (trigonometric solutions of Eq. (30)) and the unbounded
motion (hyperbolic solutions of Eq. (30)) is that for which

bue + bsi = 0.

This is actually the static thermal buckling load, which in the present case leads to the following expression
for the critical temperature amplitude

D117'C2
LZ(Allfxxx + A22ayy + 2A]2(xxy)

Ther =

yielding, for the present case, the value: 7, = 4.074°C.

The response of the plate, as predicted by the linear analysis, is shown in Fig. 1 for thermal loads of two
different temperature amplitudes: 7,, = 4.0°C, and 7,, = 4.1°C. It is readily observed that the response
caused by the thermal loading with 7,, = 4.0°C is bounded whereas the response with 7,, = 4.1°C is un-
bounded, implying that the system under the latter loading condition, (7,, = 4.1°C) is unstable. The dy-
namic thermal buckling load, namely the largest amplitude of the thermal loading which yields a bounded
response is therefore 7, = 4.0°C.

In Fig. 2, the variation with time of the largest Lyapunov exponent of the plate under the aforemen-
tioned loading conditions is presented. Under a thermal loading of amplitude 7, = 4.0°C, the largest
Lyapunov exponent approaches zero (Fig. 2a), indicating a stable response. For 7,, = 4.1°C, on the other
hand, the Lyapunov exponent is positive (Fig. 2b), implying instability of the system. Hence, the Lyapunov
exponent stability analysis of the thermally induced motion of the linearly elastic plate agrees with the
conclusions drawn from the direct examination of the plate response and its nature (Fig. 1), under loads of
various amplitudes. Consequently, the Lyapunov exponents form a quantitative and effective tool for in-
vestigating and determining whether the dynamic response of the plate is stable or not.
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Fig. 1. Variation of the maximum transverse displacement with time for a unidirectional [45°] plate subjected to a thermal load of
amplitude 7,, (linear analysis).
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Fig. 2. Lyapunov exponents for a unidirectional [45°] plate subjected to a thermal load of amplitude 7, (linear analysis).

4.1.2. Geometrically nonlinear analysis

Having studied the linearized problem of dynamic buckling, let us investigate the nonlinear equations of
motion (19) that incorporate the geometrically nonlinear effects. In Fig. 3, the response of the plate, as
predicted by the nonlinear analysis, is shown for thermal loads with two different temperature amplitudes:
T, = 3.9°C, and T,, = 4.0°C. It is seen that both loadings yield bounded motion, and this is true also for
loads of lower or somewhat higher amplitudes (not shown here). However, contrary to the linear case, a
bounded response does not necessarily imply stability.

In order to check the stability of the thermally induced nonlinear motion, the largest Lyapunov expo-
nents for the plate under the same type of thermal loads are examined. These are shown in Fig. 4. Ac-
cording to Fig. 4a, the plate subjected to a load of amplitude 7,, = 3.9°C exhibits a stable behavior, since its
Lyapunov exponent approaches zero. Under a load of temperature amplitude 7,, = 4.0°C, on the other
hand, the plate is unstable since its Lyapunov exponent, shown in Fig. 4b, approaches a positive value.
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Fig. 3. Variation of the maximum transverse displacement with time for a unidirectional [45°] plate subjected to a thermal load of
amplitude 7,, (nonlinear analysis).
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Fig. 4. Lyapunov exponents for a unidirectional [45°] plate subjected to a thermal load of amplitude 7,, (nonlinear analysis).

As demonstrated in the previous subsection, the loss of stability of a linear system can be characteri-
zed also by the development of a divergent motion, namely an unbounded response. In contrast, it turns out
that the nonlinear response of the plate due to thermal loading remains bounded, though, not necessarily
stable. The definition of the stability limit in these cases, has to be based on another criterion. One of the
concepts used in various investigations (e.g. Gilat and Aboudi, 1995; Ari-Gur and Simonetta, 1997) is the
stability concept of Budiansky (1967). According to this concept, the critical conditions under which dy-
namic buckling occurs involve a large change in the response due to a small change in the loading. In order
to employ Budiansky’s criterion, a buckling curve which displays the variation of a characteristic response
parameter versus the load parameter, has to be investigated. The critical load is then determined by in-
spection as the one for which the slope of the buckling curve abruptly changes.

Fig. 5 shows the buckling curves for the previously discussed plate as predicted by the linear and the
nonlinear analyses. The figure shows the variation of the non-dimensional amplitude 4 of the thermally
induced vibrations with the increase of the thermal loading amplitude 7,,. The buckling curve resulting from
the linear analysis in conjunction with the Budiansky’s concept yields the same thermal buckling load which
has been determined before, using the Lyapunov exponent.
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Fig. 5. Buckling curves for a unidirectional [45°] plate subjected to a thermal load of amplitude 7,,.

Trying to apply Budiansky’s concept for the nonlinear analysis, it turns out that this criterion for dy-
namic instability is not always decisive. It becomes ambiguous when the change of the slope of the buckling
curve is not abrupt. Moreover, it may depend on the choice of the parameter characterizing the structure

dynamical response (such as A).
A comparison between the observations resulting from the Lyapunov exponent analysis and those based

on Budiansky’s concept, however, shows consistency. The Lyapunov exponent analysis on the other hand
clearly distinguishes stable systems from unstable ones. In addition, it enables the direct diagnosis of in-
stability of the motion of a plate due to a specific loading, without the awkward need to determine its

response over a wide spectrum of loading parameters.

4.2. Mechanical loading

4.2.1. Step load
Basing on the formulation given in Section 2.1(b), consider a three layered symmetric angle-ply

[45°/ — 45°/45°] the edges x = 0, L of which are subjected to a sudden normal in-plane displacement
U(t) = U,Uy(t) (31)
where

Up(t) = [PH(t) = 365H (1) + 365H (1) — 6H(1:)]/(60°) (32)
tt1=t—n, lzzl‘—zl’], 13:l—31’]

where H(¢) is the Heaviside unit function. According to this equation the edge displacement rises smoothly
from zero at time ¢ = 0 to the value U, at t = 35, and remains constant thereafter.
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Fig. 6. Lyapunov exponents for a [45°/ — 45°/45°] plate subjected to a mechanical step load through edge shortening of amplitude U,,.

Fig. 6 displays the Lyapunov exponents of the plate subjected to the previously described mechanical
loading with # = 0.02 s as predicted by the nonlinear analysis. It is readily observed that whereas the
loading with an edge displacement amplitude U,, = U,,10*/L = 0.39 results in a stable motion (which is
characterized by a vanishing Lyapunov exponent (Fig. 6a)), the loading amplitude U, = 0.4 yields an
unstable response (with is characterized by a positive Lyapunov exponent (Fig. 6b)). It should be noted that
both loadings induce bounded motion.

4.2.2. Impulsive load of finite duration
Consider a unidirectional [0°] plate the edges x = 0,L of which are subjected to an axial load of the
following form

N(t) = =Nu[Uo(t) — U(t — 3n)]

which describes an impulse of amplitude N,, and duration 65. The presented results are for n = 1.23 107 s.
Results of the Lyapunov exponent stability analysis based on the fully dynamic equations (including in-
plane inertia) are presented in Fig. 7. An impulsive loading of amplitude N,, = N,,/h = 24. MPa yields a

0.12

(@) Nm=24MPa

0.10

(b) Nm=2.4GPa

0.08 . 311

! | | | | | | | 1
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1 /.1 1 fet
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Fig. 7. Lyapunov exponents for a unidirectional [0°] plate subjected to a mechanical impulse of amplitude N,,.
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Fig. 8. Buckling curve for a unidirectional [0°] plate subjected to a mechanical impulse of amplitude N,.

Lyapunov exponent approaching zero (Fig. 7a) namely a stable response. On the other hand, a load of
amplitude N,, = 2.4 GPa yields a positive Lyapunov exponent (Fig. 7b) indicating an unstable motion.

In order to compare the results of the Lyapunov exponent stability analysis with those based on the
concept of Budiansky, the buckling curve, as predicted by the fully dynamic analysis, is presented in Fig. 8.
This shows the variation of the non-dimensional maximum transverse displacement, %, = max, max, u./h,
with the load amplitude. The observation drawn from Fig. 7 can be considered to be consistent with the
character of the corresponding buckling curve.

5. Conclusions

The dynamic stability of elastic composite plates has been quantitatively determined by means of
Lyapunov exponents. The results of the Lyapunov exponent analysis were shown to be consistent with the
observations based on other qualitative criteria for dynamic buckling. However, the Lyapunov exponent
concept is decisive and provides an efficient tool for clearly distinguishing stable systems from unstable
ones. Moreover, it enables the direct diagnosis of the nature of the plate response to a specific loading.

In the preset work the stability of infinitely wide linearly elastic composite plates was investigated in the
framework of geometrically nonlinear analysis. The Lyapunov exponents concept should be suitable for
studying the stability of structural systems having a different geometry, such as shells, or made of material
exhibiting nonlinearly elastic or viscoelastic behavior.
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Appendix A

Taking into account the symmetry with respect to x = L/2 (implying that in Eq. (18) odd terms only are
included), the functions in Eq. (19) have the following form:

km
Libyy = — f) 2y
[ /kn\® . 16kn | 4kn
hbyy = — WOk(f) T ae —a dyj = 5 (djes + djcs)
k2
Libyy = — f) di;
[ rkn\® . 16k | 4kn
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Libsy = — (f) dy — (T) (Byic3 + Biges — Dyy) — (T) mU(f)
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